

Two fluted points from Northern Ohio: Petersen Site, Ottawa County and Fairview Park, Cuyahoga County

Metin I. Eren^{123*}; Michelle R. Bebber^{1 2}; Briggs Buchanan⁴; Isabella Chismar⁵;
Frieda Geiger^{6**}; Charles Stephens⁷.

*Corresponding Author: meren@kent.edu

**Deceased

Abstract

We provide data and images on two fluted points found in Ohio: one from the Petersen site in Ottawa County and one from Fairview Park in Cuyahoga County. Our data and images may be useful to syntheses or meta-analyses, and our report serves as a marker for where, or by whom, these fluted points are currently curated.

Introduction

Given their rarity, Paleoindian fluted points should be described and reported upon if possible. Beyond providing information about Stone Age tool morphology, technology, raw material choices, among other possible information, the publishing of fluted points can contribute to fluted point geographic surveys. The latter contribute to archaeologists' broader understanding of Paleoindian mobility and land use or sampling bias (Bever and Meltzer 2007; Gingerich et al. 2025; Lepper 1983, 1985; Slade and Meltzer 2023). Here, we report on two fluted points that have been brought to the attention of Kent State University and Cleveland Museum of Natural History archaeologists. Measurements recorded from each point are presented in Table 1.

Point Descriptions

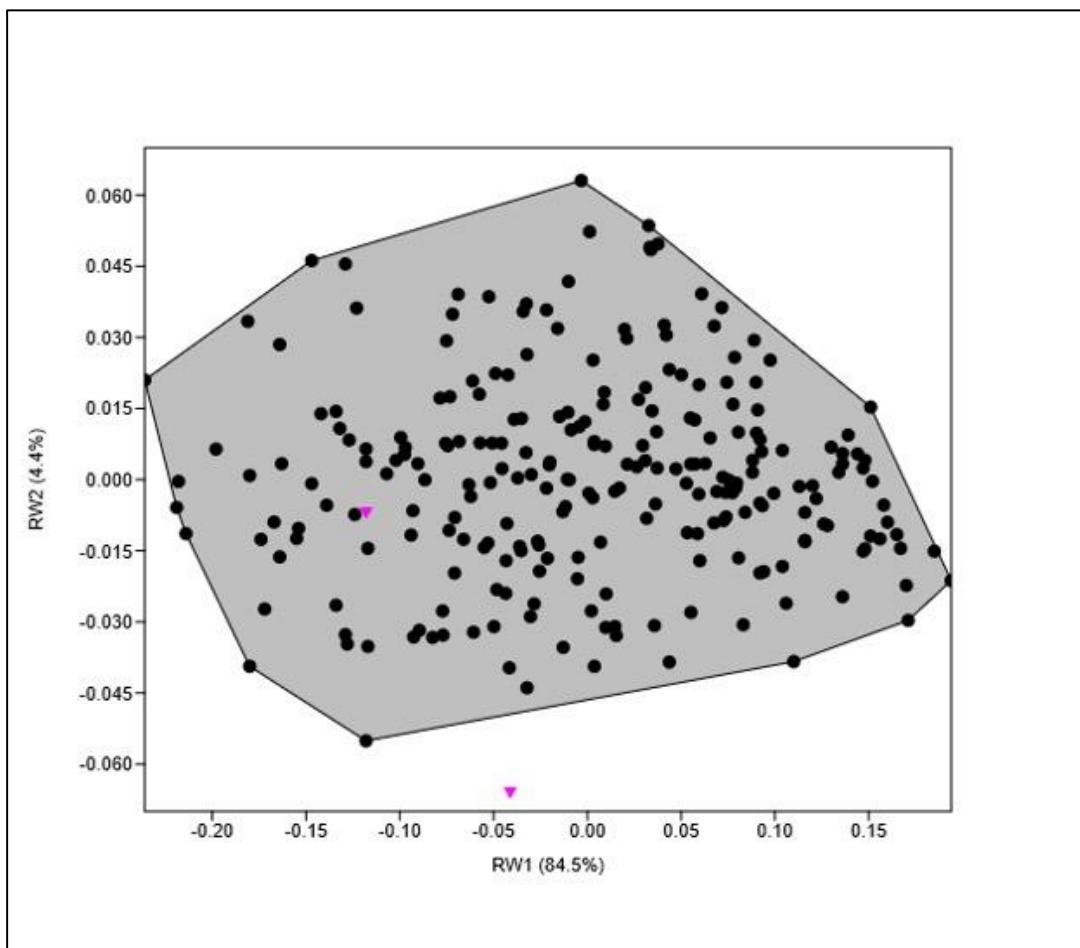
The first fluted point (Specimen 1) is from the Petersen Site, a multicomponent site in Ottawa County, Ohio (Abel 2012). It is curated at the Cleveland Museum of Natural History (having been previously acquired by co-author Charles Stephens). The specimen was previously depicted by Abel (2012:22, Figure 25b) and it is consistent with Clovis plan-view morphology and other attributes (Figures 1 and 2). The point exhibits ground proximal-lateral and basal edges. An 'impact scar' is present at its tip (which is not to say projectile impact was necessarily

¹ Department of Anthropology, Kent State University, Kent, Ohio, 44224, USA

² Cleveland Museum of Natural History, Cleveland, Ohio, 44106, USA

³ MacDonald Institute for Archaeological Research, Department of Archaeology, University of Cambridge, CB2 3ER, UK

⁴ Department of Anthropology and Sociology, University of Tulsa, Tulsa, Oklahoma, 74104, USA


⁵ Brunswick, Ohio, 44212, USA

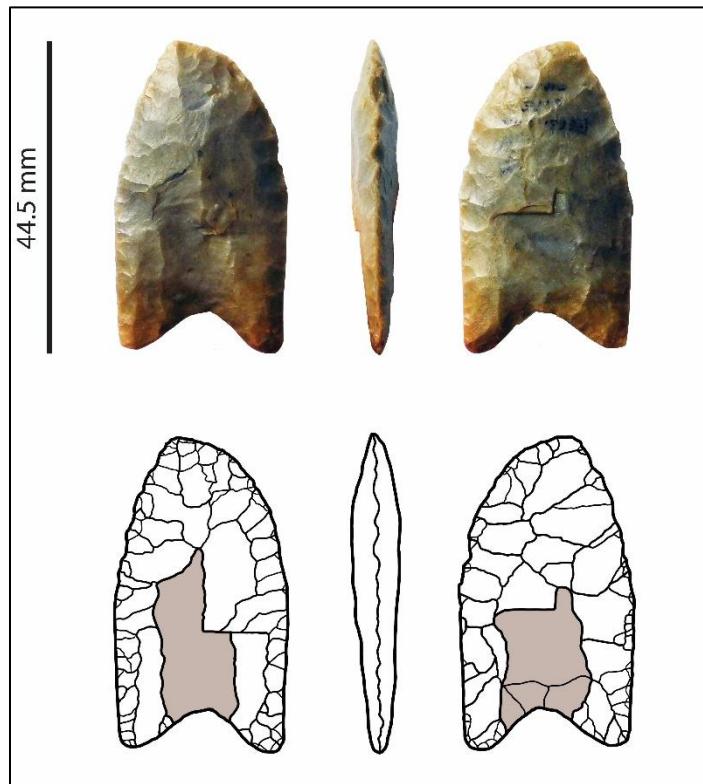
⁶ Grafton, Ohio, 44044, USA

⁷ Sugar Creek Chapter of the Archaeological Society of Ohio (A.S.O.), Massillon, Ohio, 44647, U.S.A

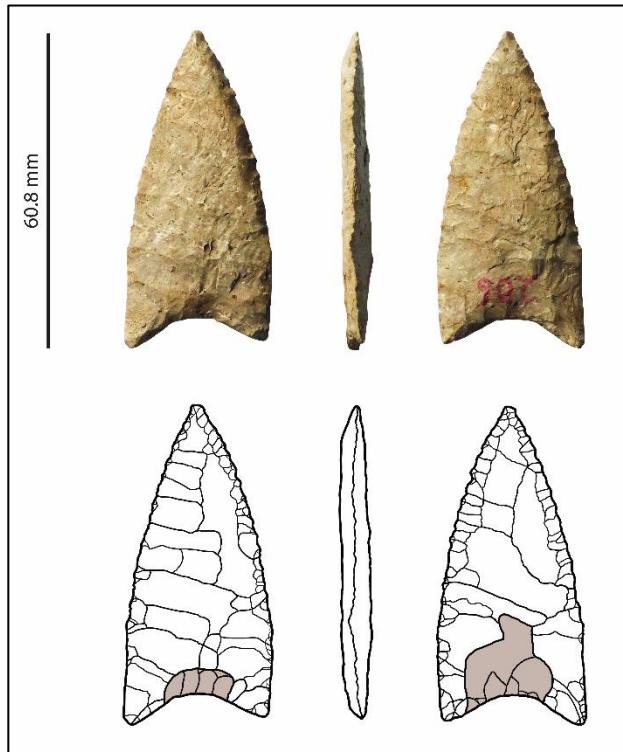
Table 1. Metric data recorded from the fluted points described in this study.

Specimen	Figure #	Mass (g)	Length (mm)	Width (mm)	Basal Width (mm)	Proximal-Lateral Edge Grinding Length #1 (mm)	Proximal-Lateral Edge Grinding Length #2 (mm)	Flute Length #1 (mm)	Flute Length #2 (mm)	Basal Concavity Depth (mm)
1	2	8.3	44.5	24.8	23.6	23.7	20.1	27.9	23.9	6.4
2	3	9.3	60.8	25.4	28.0	21.0	17.8	22.4	11.0	5.9

Figure 1. Results of the geometric morphometric analyses of the two Ohio points (for methods see Buchanan et al. 2007, 2014, 2018). The graph shows relative warps scores describing shape variation in the sample of points. The x-axis is relative warp 1 and represents 84.5% of the overall shape variation in the dataset and the y-axis is relative warp 2 and represents 4.4% of that variation. The two fluted points described here are shown in pink, and the Clovis point sample ($n=241$) is shown in black. The Clovis sample came from across North America (see Buchanan et al. 2014). A convex hull is used to demarcate the extent of shape variation in the Clovis sample. The overall shape of Specimen 1 (from the Petersen site) places it within the overall Clovis variation, whereas the overall shape of Specimen 2 (from Fairview Park) is found outside of the Clovis variation. Specimen 2 differs from the Clovis sample primarily because the maximum width on this specimen is found near the base.


the scar's cause; see Rots and Plisson 2014; Thulman and Fenerty 2024). The presence of 'shoulders' at the junction where the ground edge and sharp blade meet may be indicative of resharpening, although the irregularity of the blade edge, which seems to be contributing to the shoulder morphology, could also be from knife use or taphonomic processes. Minor crushing at the apex of the basal concavity is consistent with the fluting 'shock absorber' hypothesis (Story et al. 2019; Thomas et al. 2017), but this crushing might also be due to taphonomy. The point's stone raw material is macroscopically consistent with Flint Ridge Chalcedony from central Ohio, especially given its blue-grey predominance, the red and yellowish color at its base, its vitreous appearance, and the semi-translucence at its edges (DeRegnaucourt and Georgiady 1998; see also Abel 2012:22).

The second fluted point (Specimen 2, Figures 1 and 3) belongs to the family of co-author Isabella Chismar and was reportedly found by her great, great grandmother Frieda Geiger when the latter lived in Fairview Park, Cuyahoga County, Ohio (at the time of discovery, the town was called 'Parkview'). The property of discovery is located on Mastick Road approximately 300 meters northwest of the Rocky River. Frieda also collected many other point types from the same location (Figure 4).


Like Specimen 1 described above, Specimen 2 exhibits ground proximal-lateral and basal edges. It also exhibits 'shoulders' at the junction where the ground edge and sharp blade meet. We suspect this shouldering is likely evidence of resharpening because there is no evidence of taphonomic damage and both edges exhibit beveling. The point's raw material is macroscopically consistent with several fossiliferous cherts, such as Cedarville-Guelph from west-central Ohio or Harrodsburg chert from central Indiana (DeRegnaucourt and Georgiady 1998).

The reader likely notes that this second fluted point falls outside our depiction of Clovis plan-view variation (Figure 1). One explanation is that Specimen 2 may not be 'culturally Clovis.' Another explanation is that the 'Clovis cultural variation' depicted by the 241 black circles in Figure 1 is not fully representative of all possible Clovis culture point plan-view morphologies (but see Ragan and Buchanan 2018). With respect to the second fluted point, it differs from the Clovis sample primarily because its maximum width is found near the base. This feature could be due to the inferred resharpening we proposed above. However, we cannot say when the resharpening occurred, or the skill of the knapper who did the resharpening. Given the presence of Holocene points at the Fairview Park property (Figure 4), and the documented occurrence elsewhere of Holocene peoples making use of Clovis lithic tools (e.g., Boulanger et al. 2022), perhaps another explanation is that (Specimen 2) *was* initially 'Clovis' but then subsequently altered by a Holocene knapper via resharpening, 'pushing' the specimen out of typical Clovis variation. Without additional evidence (e.g., chronometric; other fluted points found at the same location; the exact context of the Clovis point relative to the Holocene points), we cannot definitively state whether the specimen is 'culturally Clovis,' and to argue one way or another would be "to vainly beat the air" (Darwin 1859:49).

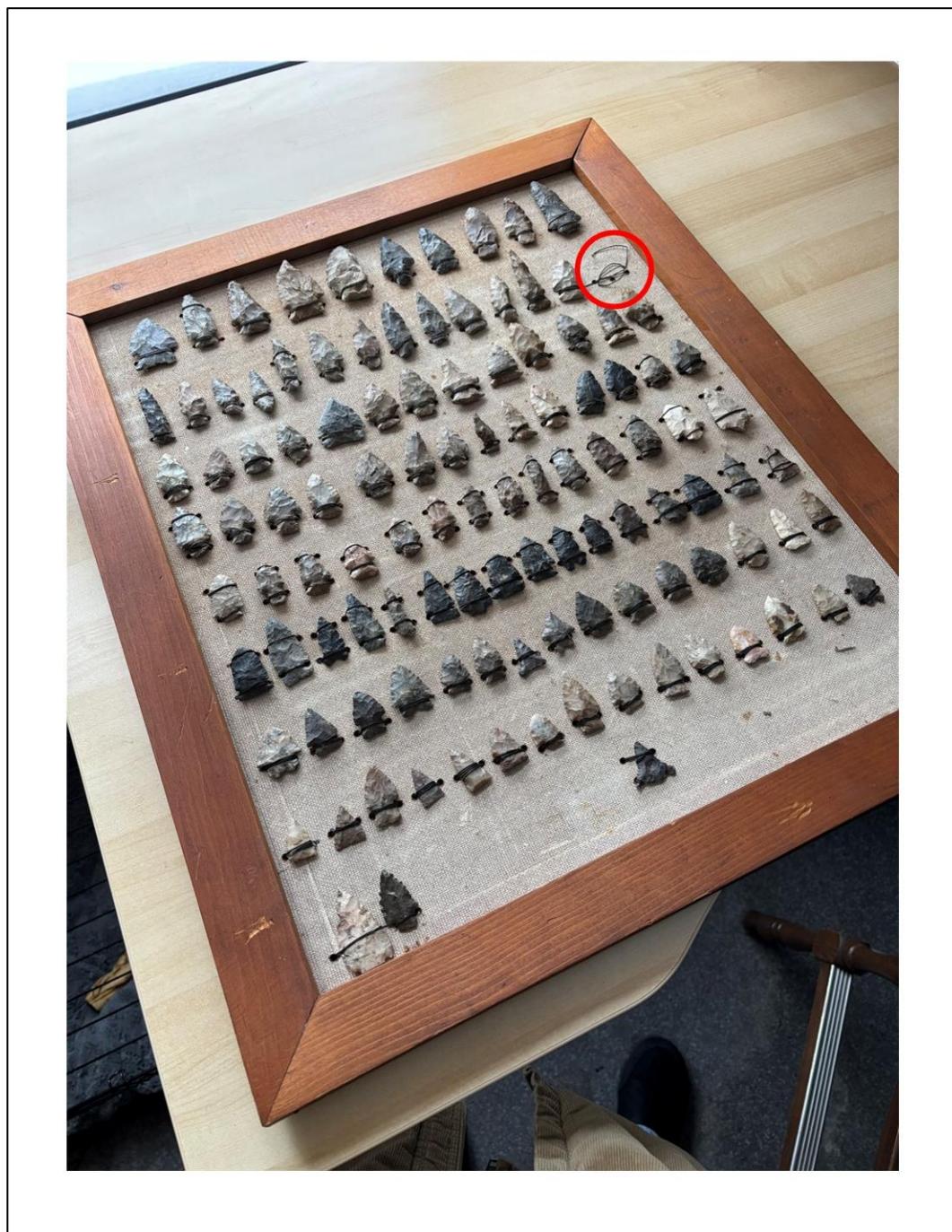

Finally, we noted that both fluted points described here exhibit grinding on their proximal-lateral edges. We do not currently know why Paleoindians ground smooth these edges (Eren et al. 2024; Werner et al. 2019), but one long-standing hypothesis is that ground edges

Figure 2. Images and illustrations of Specimen 1 from the Petersen site.

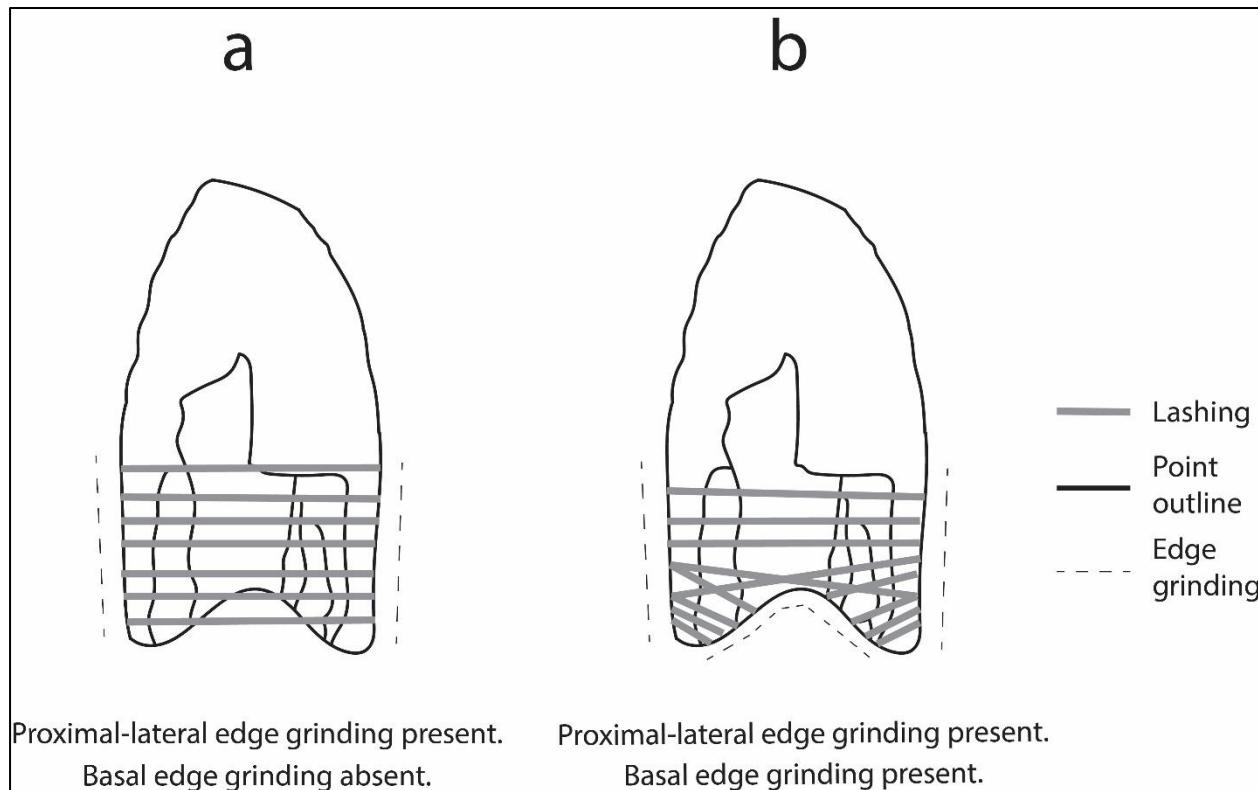

Figure 3. Images and illustrations of Specimen 2 from Fairview Park.

Figure 4. The collection of points from which Specimen 2 was derived. The circled location is where the Clovis point was kept.

would have prevented lashings used in hafting from being torn (Roberts 1935, 1940). We also noted that both fluted points exhibit basal edges that have been ground as well. If indeed lashings were used by Paleoindians to haft points to shafts or handles, we wonder whether the presence or absence of basal grinding broadly reveals *how* the lashings wrapped around the point. Perhaps on

fluted points *without* basal edge grinding the lashings only contacted the proximal lateral edges (Figure 5a), but on fluted points *with* basal edge grinding the lashings also wrapped around the ears in some way (Figure 5b). If fluted point ‘ear wrapping’ occurred, another question is whether it potentially had a functional benefit to the overall composite tool, beyond preserving lashings. For example, perhaps ear wrapping stabilized or strengthened the haft, prevented ear breakage, or somehow deterred the point from splitting the wooden shaft upon impact. Future artifact analyses such as microwear might be able to assess whether fluted point ear wrapping occurred and future experiments can test whether the practice provided potential functional benefits.

Figure 5. A schematic illustration of fluted point lashing differences: lashings making contact only with the proximal-lateral edges (a) versus “ear wrapping” (b). We hypothesize that basal grinding may indicate the latter. We note, however, that Paleoindian lashings have never been recovered archaeologically, and we do not currently know how often, or even if, Paleoindians used lashings to haft their points.

References Cited

Abel, Timothy James

2012 *The Petersen Site: A Prehistoric to Historic Occupation in Northeastern Ohio.* Occasional Papers in Northeastern No. 11. Copetown Press, St. John's.

Bever, Michael R., and David J. Meltzer

2007 Exploring Variation in Paleoindian Life Ways: The Third Revised Edition of the Texas Clovis Fluted Point Survey. *Bulletin of the Texas Archaeological Society* 78: 65-99.

Boulanger, Matthew T., Briggs Buchanan, G. Logan Miller, Brian G. Redmond, Bob Christy, Brandi L. MacDonald, David Mielke, Ryun Mielke, Connie Mielke, Tate Maurer, Bruce Meyer, Monty Meyer, Brian Trego, Andy Wilson, Pete Cartwright, Leo Ott, Michelle R. Bebber, David J. Meltzer, and Metin I. Eren

2022 The Mielke Clovis Site (33SH26), Western Ohio, USA, Geochemical Sourcing, Technological Descriptions, Artifact Morphometrics, and Microwear. *Midcontinental Journal of Archaeology* 47:69-102.

Buchanan, Briggs, Mark Collard, and Michael J. O'Brien

2014 Continent-Wide or Region-Specific? A Geometric Morphometrics-Based Assessment of Variation in Clovis Point Shape. *Archaeological and Anthropological Sciences* 6:145-162.

Buchanan, Briggs, Brian Andrews, Michael J. O'Brien, and Metin I. Eren

2018 An Assessment of Stone Weapon Tip Standardization During the Clovis-Folsom Transition in the Western United States. *American Antiquity* 83:721-734.

Buchanan, Briggs, Eileen Johnson, Richard E. Strauss, and Patrick J. Lewis

2007 A Morphometric Approach to Assessing Late Paleoindian Projectile Point Variability on the Southern High Plains. *Plains Anthropologist* 52:279-299.

Darwin, Charles

1859 *On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life.* John Murray, London.

DeRegnaucourt, Tony, and Jeff Georgiady

1998 *Prehistoric Chert Types of the Midwest.* Western Ohio Podiatric Medical Center, Occasional Monographs Series of the Upper Miami Valley Archaeological Research Museum, No. 7, Greenville & Arcanum.

Current Research in Ohio Archaeology 2022

www.ohioarchaeology.org

Eren, Metin I., Michelle R. Bebber, Lawrence Mukusha, Michael Wilson, Andrew R. Boehm, Briggs Buchanan, G. Logan Miller, Matt Skoglund, John Hayes, Max Barta, Samantha Bates, Ryan Callaghan, Chester Floyd, Seth Morris, Spencer Neuharth, Clay Newcomb, Steven Rinella, Corinne Schneider, Mary Margaret Smith, Anne Parfitt, David J. Meltzer

2024 Experimental Bison Butchery Using Replica Hafted Clovis Fluted Points and Large Handheld Flakes. *Journal of Archaeological Science: Reports* 55:104480.

Gingerich, Joseph A.M., Gary Argabright, Jonathan E. Bowen, and David S. Lamp

2025 An Update on the Ohio Fluted Point Survey and Paleoindian Site Locations in Ohio. *Northeast Anthropology*, 95-96:63-88.

Lepper, Bradley T.

1983 Fluted Point Distributional Patterns in the Eastern United States: A Contemporary Phenomenon. *Midcontinental Journal of Archaeology* 8:269-285.

1985 The Effects of Cultivation and Collecting on Ohio Fluted Point Finds: A Reply to Seeman and Prufer. *Midcontinental Journal of Archaeology* 10:241-250.

Ragan, Kathryn, and Briggs Buchanan

2018 Assessing Collector Bias: A Geometric Morphometric Analysis of a Collection of Isolated Clovis Points from the Midcontinent. *Midcontinental Journal of Archaeology* 43:91-111.

Roberts, Frank H. H.

1935 A Folsom Complex: Preliminary Report on Investigations at the Lindenmeier Site in Northern Colorado. *Smithsonian Miscellaneous Collections*, 94.

1940 Developments in the Problem of the North American Paleo-Indian. *Smithsonian Miscellaneous Collections* 100:51-116.

Rots, Veerle, and Hugues Plisson

2014 Projectiles and the Abuse of the Use-Wear Method in a Search for Impact. *Journal of Archaeological Science* 48:154-165.

Slade, Alan M., and David J. Meltzer

2023 Texas Clovis Fluted Point Survey, 4th Update: Further Insights into the Early Paleoindian Occupation of Texas. *Bulletin of the Texas Archeological Society* 94:1-23.

Story, Brett A., Metin I. Eren, Kaitlyn Thomas, Briggs Buchanan, and David J. Meltzer

2019 Why are Clovis Fluted Points More Resilient than Non-Fluted Lanceolate Points? A Quantitative Assessment of Breakage Patterns Between Experimental Models. *Archaeometry* 61:1-13.

Current Research in Ohio Archaeology 2022

www.ohioarchaeology.org

Thomas, Kaitlyn A., Brett A. Story, Metin I. Eren, Briggs Buchanan, Brian N. Andrews, Michael J. O'Brien, and David J. Meltzer

2017 Explaining the Origin of Fluting in North American Pleistocene Weaponry.
Journal of Archaeological Science 81:23-30.

Thulman, David K., and Brendan Fenerty

2024 A Simple Experiment Challenges the Inference that Macro-Fractures on Chipped-Stone Tools are Clear Evidence of High-Velocity Impacts. *Lithic Technology* 49:29-40.

Werner, Angelia, Andrew Kramer, Crystal Reedy, Michelle R. Bebber, Justin Pargeter, and Metin I. Eren

2019 Experimental Assessment of Proximal-Lateral Edge Grinding on Haft Damage Using Replicated Late Pleistocene (Clovis) Stone Projectile Points.
Archaeological and Anthropological Sciences 11:5833-5849.